How do you simplify #(tanx + 1)^2 cosx#?
1 Answer
Explanation:
Let's begin by expanding the bracket.
#(tanx+1)^2=tan^2x+2tanx+1#
#color(orange)"Reminder " color(red)(bar(ul(|color(white)(a/a)color(black)(tanx=(sinx)/(cosx))color(white)(a/a)|)))#
#rArrtan^2x+2tanx+1=(sin^2x)/(cos^2x)+(2sinx)/cosx+1# substitute this back into the original.
That is
#(sin^2x/cos^2x+(2sinx)/cosx+1)cosx# distribute the bracket.
#rArrsin^2x/cosx+2sinx+cosx# express each term with a common denominator of cosx
#=(sin^2x+2sinxcosx+cos^2x)/(cosx)........ (A)#
#color(orange)"Reminder " color(red)(bar(ul(|color(white)(a/a)color(black)(sin^2x+cos^2x=1)|)))# and
#color(red)(bar(ul(|color(white)(a/a)color(black)(sin2x=2sinxcosx)color(white)(a/a)|)))# Returning to (A)
#rArr(1+sin2x)/cosx=1/cosx+(sin2x)/cosx#
#color(orange)"Reminder " color(red)(bar(ul(|color(white)(a/a)color(black)(secx=1/(cosx))color(white)(a/a)|)))#
#rArr1/cosx+(sin2x)/cosx=secx+secxsin2x#
#rArr(tanx+1)^2cosx=secx(1+sin2x)#