How do you simplify with trigo identities #(sinx)/(2tanxsec^2x)# so it can result #1/2cos^3x# ?

1 Answer
Nov 22, 2017

Please see below.

Explanation:

Let's substitute for #tanx# and #sec^2x# in terms of #cosx#:

#tanx=sinx/cosx#

#secx=1/cosx#

#sinx/(2sinx/cosx(1/cos^2x))=sinx/((2sinx)/cos^3x)=(sinxcos^3x)/(2sinx)=(cancelcolor(red)sinxcos^3x)/(2cancelcolor(red)sinx)=1/2cos^3x#