How do you simplify #(x+3)(x+2) #?

1 Answer
May 14, 2018

Answer:

#x^2 + 5x + 6#

Explanation:

#(x+3)(x+2)#

To simplify this, we use the distributive method called FOIL, as shown here:
m.jumpstart.com

Following this image, first multiply the #color(red)("firsts")#:
#color(red)(x * x) = x^2#

Then the #color(purple)("outsides")#:
#color(purple)(x * 2) = 2x#

Then the #color(darkturquoise)("insides")#:
#color(darkturquoise)(3 * x) = 3x#

And finally the #color(limegreen)("lasts")#:
#color(limegreen)(3 * 2) = 6#

Now combine all of these:
#x^2 + 2x + 3x + 6#

We can still combine #color(blue)(2x + 3x)# because they are like terms. Therefore, the final answer is:
#x^2 + 5x + 6#

Hope this helps!