How do you solve #18=e^(3x)#?

1 Answer
Dec 24, 2016

Answer:

#x = 0.963 ( 3 s.f.)#

Explanation:

#18 = e^(3x)#

convert into a logarithmic function:

e.g. #log_10(100)=2#
#-> 10^2 = 100#

#18 = e^(3x)#
#-> log_e(18) = 3x#

#log_e(n) = ln(n)#

enter #-> ln(18)# into a calculator:

#-> ln(18) = 2.89037..#

#3x = 2.8903717578961647#

divide this answer by #3#:

#x = 0.963 ( 3 s.f.)#