# How do you solve 2/5=(y-26)/(y+11)?

Apr 8, 2018

$\frac{152}{3}$

#### Explanation:

First, multiply both sides by $5 \left(y + 11\right)$ to get rid of all denominators.

$\frac{2}{\cancel{5}} \times \cancel{5} \left(y + 11\right) = \frac{y - 26}{\cancel{\left(y + 11\right)}} \times 5 \cancel{\left(y + 11\right)}$

Now simplify to get: $2 \left(y + 11\right) = 5 \left(y - 26\right)$

Now multiply both sides out. $2 y + 22 = 5 y - 130$

Now place constants on the same side and the variables on the same side. $3 y = 152$

Now, just divide both side by 3 and you get your answer.

$y = \frac{152}{3}$

Now, 152 does not evenly divide by three, so we can present it as an improper fraction ($\frac{152}{3}$) or a mixed fraction ($50 \frac{2}{3}$).

Apr 8, 2018

$y = 50 \frac{2}{3} \approx 50.7$

#### Explanation:

$\frac{2}{5} = \frac{y - 26}{y + 11}$

First, cross multiply;

$2 \left(y + 11\right) = 5 \left(y - 26\right)$

Secondly, eliminate the brackets;

$2 y + 22 = 5 y - 130$

Thirdly, collect like terms;

$2 y - 5 y = - 130 - 22$

$- 3 y = - 152$

Divide both sides by $- 3$

$\frac{- 3 y}{- 3} = \frac{- 152}{- 3}$

(cancel(-3)y)/cancel(-3) = (cancel-152)/(cancel-3)

$y = \frac{152}{3}$

$y = 50 \frac{2}{3} \approx 50.7$

Apr 8, 2018

$y = \frac{152}{3}$

#### Explanation:

=$\frac{2}{5} = \frac{y - 26}{y + 11}$

=$2 y + 22 = 5 y - 130$

=$5 y - 2 y = 130 + 22$

=$3 y = 152$

=$y = \frac{152}{3}$

Hope it helps!