How do you solve #-2( n - 5) = 20#?

1 Answer
May 27, 2018

#n = -5#

Explanation:

#-2(n-5)=20#

First, use the distributive property shown below to simplify/expand #-2(n-5)#:
cdn.virtualnerd.com

Following this image, we know that:
#color(blue)(-2(n-5) = (-2 * n) + (-2 * -5) = -2n + 10)#

Now put that back into the equation:
#-2n + 10 = 20#

Subtract #color(blue)10# from both sides of the equation:
#-2n + 10 quadcolor(blue)(-quad10) = 20 quadcolor(blue)(-quad10)#

#-2n = 10#

Now divide both sides by #color(blue)(-2)#:
#(-2n)/color(blue)(-2) = 10/color(blue)(-2)#

Therefore,
#n = -5#

Hope this helps!