How do you solve #2^x=64#?

2 Answers
Oct 16, 2016

I got #x=6#

Explanation:

We can write it as:
#2^x=2^6#
so that #x=6#

Oct 16, 2016

#x=6#

Explanation:

#2^x=64#

Just in case your teacher wants you to solve this the fancy way...

#log2^x=log64color(white)(aaa)#Take the log of both sides

#xlog2=log64color(white)(aaa)#Use the log rule #logx^a=alogx#

#(xlog2)/log2=log64/log2color(white)(aaa)#Divide both sides by log2

#x=6#

Or, if you're not allowed to use a calculator...

#log_2 2^x=log_2 64#

#xlog_2 2=log_2 64#

#(xlog_2 2)/log_2 2=log_2 64/log_2 2#

#log_color(red)2 color(violet)(64) = color(blue)6# because the answer to a log problem is the exponent #color(blue)6# that will make the base #color(red)2# equal the argument #color(violet)(64)#. In other words, #color(red)2^color(blue)6=color(violet)(64)#. Similarly, #log_color(red)2 color(violet)(2) =color(blue)1# because #color(red)2^color(blue)1=color(violet)2#. But if you knew that, you could solve this problem without all the fancy math!

#x=6/1#

#x=6#