How do you solve #2x^2 - 3x + 4 = 0# using the quadratic formula?
3 Answers
Explanation:
if
or
Explanation:
Given:
#2x^2-3x+4 = 0#
Note that this is of the form:
#ax^2+bx+c = 0#
with
The discriminant
#Delta = b^2-4ac = (-3)^2-4(2)(4) = 9-32 = -23#
Since
We can still use the quadratic formula to find them:
#x = (-b+-sqrt(b^2-4ac))/(2a)#
#color(white)(x) = (-b+-sqrt(Delta))/(2a)#
#color(white)(x) = (3+-sqrt(-23))/4#
#color(white)(x) = (3+-sqrt(23)i)/4#
#color(white)(x) = 3/4+-sqrt(23)/4i#
The solutions to
#x = (-b +- sqrt(b^2-4ac))/(2a)# .
In this case, we get
# = (3 +- sqrt(9-32))/4#
# = (3 +- sqrt (-23))/4#
The solutions are imaginary