How do you solve #2x^2 + 5x -3=0# by completing the square?
1 Answer
Explanation:
We will use the difference of squares identity, which can be written:
#a^2-b^2=(a-b)(a+b)#
First, to reduce the amount of arithmetic involving fractions, first multiply through by
#0 = 16x^2+40x-24#
#= (4x)^2+2(5)(4x)-24#
#= (4x+5)^2-25-24#
#=(4x+5)^2-7^2#
#=((4x+5)-7)((4x+5)+7)#
#=(4x-2)(4x+12)#
#=(2(2x-1))(4(x+3))#
#=8(2x-1)(x+3)#
Hence:
#x = 1/2# or#x=-3#
Why did I premultiply by
One factor of
Otherwise, we might proceed as follows:
#0 = 2x^2+5x-3#
#=2(x^2+5/2x-3/2)#
#=2((x+5/4)^2-25/16-3/2)#
#=2((x+5/4)^2-49/16)#
#=2((x+5/4)^2-7^2/4^2)#
#=2((x+5/4)-7/4)((x+5/4)+7/4)#
#=2(x-2/4)(x+12/4)#
#=2(x-1/2)(x+3)#
Hence:
#x = 1/2# or#x=-3#
Which method do you prefer?