How do you solve #2x^2+6x+4=0# using the quadratic formula?

1 Answer
Aug 10, 2015

Answer:

The solutions for the equation are:
#color(blue)(x=-1 , x=-2#

Explanation:

#2x^2+6x+4=0#

The equation is of the form #color(blue)(ax^2+bx+c=0# where:
#a=2, b=6, c=4#

The Discriminant is given by:
#Delta=b^2-4*a*c#

# = (6)^2-(4*(2)*4)#

# = 36 -32 = 4#

The solutions are found using the formula
#x=(-b+-sqrtDelta)/(2*a)#

#x = ((-6)+-sqrt(4))/(2*2) = ((-6+-2))/4#

#x = ((-6+2))/4 = -4/4 = -1#

#x = ((-6-2))/4 = -8/4 = -2#

#color(blue)(x=-1 , x=-2#