How do you solve #3^ { 2\log x } + 9= 10\cdot 3\log x#?

1 Answer
Jun 24, 2017

#x = {1, e^2}#

Explanation:

Assuming that the equation reads

#3^(2logx)+9=10 * 3^(log x)# and now making #3^(log x)= y# we have

#y^2-10 y +9=0->{(y_1=9),(y_2=1):}#

then

#3^(log x) = 9 -> logx log 3=2 log 3->log x = 2->x = e^2#
#3^(log x)=1->log x=0->x = 1#