How do you solve #3x^2 - 12x + 2 = 0#?
1 Answer
May 10, 2017
Explanation:
The equation:
#3x^2-12x+2=0#
is in the standard form:
#ax^2+bx+c=0#
with
The discriminant
#Delta = b^2-4ac = (color(blue)(-12))^2-4(color(blue)(3))(color(blue)(2)) = 144-24 = 120 = 2^2*30#
Since
We can find the roots using the quadratic formula:
#x = (-b+-sqrt(b^2-4ac))/(2a)#
#color(white)(x) = (-b+-sqrt(Delta))/(2a)#
#color(white)(x) = (12+-sqrt(120))/6#
#color(white)(x) = (12+-sqrt(2^2*30))/6#
#color(white)(x) = (12+-2sqrt(30))/6#
#color(white)(x) = 2+-sqrt(30)/3#
That is:
#x = 2+sqrt(30)/3" "# or#" "x = 2-sqrt(30)/3#