How do you solve #3x^2 - 8x + 2 = 0# using the quadratic formula?

1 Answer
May 3, 2016

Answer:

Use the formula:

#x = (-b+-sqrt(b^2-4ac))/(2a)#

to find:

#x =(4+-sqrt(10))/3#

Explanation:

#3x^2-8x+2=0# is of the form #ax^2+bx+c=0#, with #a=3#, #b=-8# and #c=2#

This has roots given by the quadratic formula:

#x = (-b+-sqrt(b^2-4ac))/(2a)#

#=(8+-sqrt((-8)^2-(4*3*2)))/(2*3)#

#=(8+-sqrt(64-24))/6#

#=(8+-sqrt(40))/6#

#=(8+-sqrt(2^2*10))/6#

#=(8+-2sqrt(10))/6#

#=(4+-sqrt(10))/3#