How do you solve #4p^2=-7p-3# using the quadratic formula?

1 Answer
Apr 11, 2018

Answer:

See Explanation

Explanation:

To solve, you must first move all the terms to one side, so: #4p^2+7p+3=0#. Then, the quadratic formula is #x=\frac {-b\pm \sqrt {b^{2}-4ac}}(2a)#. Plug in 4 for a, 7 for b and 3 for c. You get #x=\frac {-7\pm \sqrt {7^{2}-4*4*3}}(2*4)=\frac {-7\pm 1}(8)# so, #x=(-7+1)/(8)=-6/8=-3/4# and #x=(-7-1)/(8)=(-8)/8=-1#. x=-1 and -3/4