First, subtract #color(red)(11)# from each segment of the system of inequalities to isolate the #x# term while keeping the system balanced:
#-5 - color(red)(11) >= -2x + 11 - color(red)(11) >= -9 - color(red)(11)#
#-16 >= -2x + 0 >= -20#
#-16 >= -2x >= -20#
Now, divide each segment by #color(blue)(-2)# to solve for #x# while keeping the system balanced. However, because we are multiplying or dividing an inequality by a negative numbers we must also reverse the inequality operators:
#(-16)/color(blue)(-2) color(red)(<=) (-2x)/color(blue)(-2) color(red)(<=) (-20)/color(blue)(-2)#
#8 color(red)(<=) (color(blue)(cancel(color(black)(-2)))x)/cancel(color(blue)(-2)) color(red)(<=) 10#
#8 color(red)(<=) x color(red)(<=) 10#
Or
#x >= 8# and #x <= 10#
Or, in interval notation:
#[8, 10]#