How do you solve #5cos2x+sinx=4# in the interval [0,360]?

1 Answer
Dec 9, 2016

#21^@72; 158^@28; 195^@66; 344^@44#

Explanation:

Use the trig identity: #cos 2x = 1 - 2sin^2 x#.
#5(1 - 2sin^2 x) + sin x - 4 = 0#
#5 - 10sin^2 x + sin x - 4 = 0#
#- 10sin^2 x + sin x + 1 = 0#
Solve this quadratic equation in sin x by using the improved quadratic formula (Socratic Search)
#D = d^2 = b^2 - 4ac = 1 + 40 = 41# --> #d = +- sqrt41 = +- 6.40#
There are 2 real roots
#sin x = -b/(2a) +- d/(2a) = 1/20 +- 6.40/20#
sin x = 7.40/20 = 0.37 and sin x = - 5.40/20 = - 0.27
Use calculator and trig unit circle -->
a. sin x = 0.37 --> arc #x = 21^@72# and arc
#x = 180 - 21.72 = 158^@28#
b. sin x = - 0.27 --> arc #x = -15.66, or 344^@44# (co-terminal)
and arc #x = 180 + 15.66 = 195^@66#
Answers for #(0, 360)#
#21^@72, 158^@28, 195^@66, 344^@44#