First, expand the terms within parenthesis by multiplying each term within the parenthesis by the term outside the parenthesis:
#5u - 7 + 4(2u + 2) = -3(u + 3)#
#5u - 7 + (4 xx 2u) + (4 xx 2) = (-3 xx u) + (-3 xx 3)#
#5u - 7 + 8u + 8 = -3u - 9#
Next, group and combine like terms on the left side of the equation:
#5u + 8u - 7 + 8 = -3u - 9#
#(5 + 8)u + 1 = -3u - 9#
#13u + 1 = -3u - 9#
Then, subtract #color(red)(1)# and add #color(blue)(3u)# to each side of the equation to isolate the #u# term while keeping the equation balanced:
#13u + 1 - color(red)(1) + color(blue)(3u) = -3u - 9 - color(red)(1) + color(blue)(3u)#
#13u + color(blue)(3u) + 1 - color(red)(1) = -3u + color(blue)(3u) - 9 - color(red)(1)#
#(13 + 3)u + 0 = 0 - 10#
#16u = -10#
Now, divide each side of the equation by #color(red)(16)# to solve for #u# while keeping the equation balanced:
#(16u)/color(red)(16) = -10/color(red)(16)#
#(color(red)(cancel(color(black)(16)))u)/cancel(color(red)(16)) = -(2 xx 5)/color(red)(2 xx 8)#
#u = -(color(red)(cancel(color(black)(2))) xx 5)/color(red)(cancel(2) xx 8)#
#u = -5/8#