First, add #color(red)(8u)# and subtract #color(blue)(36)# from each side of the equation to isolate the #u# term while keeping the equation balanced:
#-6 - 8u + color(red)(8u) - color(blue)(36) = -u + 36 + color(red)(8u) - color(blue)(36)#
#-6 - color(blue)(36) - 8u + color(red)(8u) = -u + color(red)(8u) + 36 - color(blue)(36)#
#-42 - 0 = -1u + color(red)(8u) + 0#
#-42 = (-1 + color(red)(8))u#
#-42 = 7u#
Now, divide each side of the equation by #color(red)(7)# to solve the equation for #u# while keeping the equation balanced:
#-42/color(red)(7) = (7u)/color(red)(7)#
#-6 = (color(red)(cancel(color(black)(7)))u)/cancel(color(red)(7))#
#-6 = u#
#u = -6#