How do you solve #-6(x-4)>2x+8#?

1 Answer
May 15, 2018

Answer:

#x<2#

Explanation:

Simply the equation further by opening the brackets first.

#-6(x-4) > 2x+8#

#-6x -(4xx(-6)) > 2x + 8#

#-6x-(-24) > 2x +8#

#-6x+24 > 2x +8#

Subtract #24# both sides:

#-6x+24-24 > 2x+8-24#
#-6x > 2x-16#

Subtract #2x# both sides:

#-6x-2x > -16#
#-8x > -16#

When dividing or multiplying by negative number, the inequality sign changes from #># to #<#. This is very important to remember.

#x < (-16)/-8#

#x<2#

Check the answer:
Let #x = 1#
#-6(-1-4) > 2(1)+8#
#-6xx(-5) > 2+8#
#30 > 10#