First, subtract #color(red)(14)# from each side of the equation to put the equation in standard form:
#6n^2 - 5n - color(red)(14) = 14 - color(red)(14)#
#6n^2 - 5n - 14 = 0#
We can now use the quadratic equation to solve this problem:
The quadratic formula states:
For #color(red)(a)x^2 + color(blue)(b)x + color(green)(c) = 0#, the values of #x# which are the solutions to the equation are given by:
#x = (-color(blue)(b) +- sqrt(color(blue)(b)^2 - (4color(red)(a)color(green)(c))))/(2 * color(red)(a))#
Substituting:
#color(red)(6)# for #color(red)(a)#
#color(blue)(-5)# for #color(blue)(b)#
#color(green)(-14)# for #color(green)(c)# gives:
#x = (-color(blue)(-5) +- sqrt(color(blue)(-5)^2 - (4 * color(red)(6) * color(green)(-14))))/(2 * color(red)(6))#
#x = (color(blue)(5) +- sqrt(25 - (-336)))/12#
#x = (color(blue)(5) +- sqrt(25 + 336))/12#
#x = (color(blue)(5) +- sqrt(361))/12#
#x = (color(blue)(5) +- 19)/12#
#x = (color(blue)(5) - 19)/12# and #x = (color(blue)(5) + 19)/12#
#x = -14/12# and #x = 24/12#
#x = -7/6# and #x = 2#