How do you solve #7=cot^2x+4cotx# in the interval [0,360]?

1 Answer
Oct 18, 2016

#37^@15, 217^@15#
#10^@65, 190^@65#

Explanation:

Bring the quadratic equation in cot x to standard form:
#cot^2 x + 4cot x - 7 = 0#
Use the new improved quadratic formula (Socratic Search)
#D = d^2 = b^2 - 4ac = 16 + 28 = 44# --> #d = +- 2sqrt11#
There are 2 real root:
#cot x = -b/(2a) +- d/(2a) = -4/2 +- 2sqrt11/2 = -2 +- sqrt11#
#cot x1 = -2 + sqrt11 = 1.32#,
#cot x2 = -2 - sqrt11 = - 5/32#
Use calculator and unit circle -->
#tan x1 = 1/1.32 = 0.7575# --> Two values of x1 -->
#x1 = 37^@15#, and #x1 = 37.15 + 180 = 217^@15#
#tan x2 = 1/-5.32 = - 0.19# --> Two values of x2-->
#x2 = 10^@65#, and #x2 = 10.65 + 180 = 190^@65#