# How do you solve 8(x+3) = 5x-(14-2x)+48?

Jun 20, 2018

color(maroon(x = 10

#### Explanation:

$8 \left(x + 3\right) = 5 x - \left(14 - 2 x\right) + 48$

$8 x + 24 = 5 x - 14 + 2 x + 48 , \text{ removing braces}$

$8 x - 5 x - 2 x = - 14 + 48 - 24 , \text{ bringing like terms together}$

color(maroon(x = 10

Jun 20, 2018

$x = 10$

#### Explanation:

$8 \left(x + 3\right) = 5 x - \left(14 - 2 x\right) = 48$

First, use the distributive property (shown below) to simplify $8 \left(x + 3\right)$ and $- \left(14 - 2 x\right)$

Following this image, we know that:
$\textcolor{b l u e}{8 \left(x + 3\right) = \left(8 \cdot x\right) + \left(8 \cdot 3\right) = 8 x + 24}$
and
$\textcolor{b l u e}{- \left(14 - 2 x\right) = - 14 + 2 x}$

Put them back into the equation:
$8 x + 24 = 5 x - 14 + 2 x + 48$

Combine like terms on the right hand side:
$8 x + 24 = 7 x + 34$

Subtract $\textcolor{b l u e}{7 x}$ from both sides:
$8 x + 24 \quad \textcolor{b l u e}{- \quad 7 x} = 7 x + 34 \quad \textcolor{b l u e}{- \quad 7 x}$

$x + 24 = 34$

Subtract $\textcolor{b l u e}{24}$ from both sides:
$x + 24 \quad \textcolor{b l u e}{- \quad 24} = 34 \quad \textcolor{b l u e}{- \quad 24}$

Therefore,
$x = 10$

Hope this helps!