How do you solve #81^ { 2x + 3} = 243^ { x + 2}#?
1 Answer
The Real solution is:
#x = -2/3#
Complex solutions are all of the form:
#x = -2/3+(2kpii)/(3ln3)" "# where#k# is any integer
Explanation:
Note that
#3^(4(2x+3)) = (3^4)^(2x+3) = 81^(2x+3) = 243^(x+2) = (3^5)^(x+2) = 3^(5(x+2))#
The function
So given:
#3^(4(2x+3)) = 3^(5(x+2))#
any Real solution satisfies:
#4(2x+3) = 5(x+2)" "color(blue)(tt"(i)")#
Multiplied out:
#8x+12 = 5x+10#
Subtract
#3x=-2#
So (dividing both sides by
#x = -2/3#
This is the unique Real solution of the original equation.
Complex solutions
Note that:
#e^(2kpii) = 1#
for any integer value of
Also:
#3^t = (e^(ln3))^t = e^(tln 3)#
Hence:
#3^((2kpii)/ln 3) = e^(2kpii) = 1#
So we can modify
#4(2x+3) = 5(x+2) + (2kpii)/(ln3)" "color(blue)(tt"(ii)")#
Hence:
#3x = -2+ (2kpii)/(ln3)#
So:
#x = -2/3+(2kpii)/(3ln3)#