# How do you solve 82= - 2( 5v - 3) - 8?

Oct 9, 2017

$v = - 8.4$

#### Explanation:

When solving equations with a variable, you want to isolate for that variable, which in this case, is $v$.

First, add $8$ to both sides, which will give you:

$90 = - 2 \left(5 v - 3\right)$

Then, distribute the $- 2$ on the RHS using the distributive property:

$90 = - 2 \left(5 v\right) - 2 \left(- 3\right)$

Multiply the terms on the RHS:

$90 = - 10 v + 6$

Subtract $6$ from both sides:

$84 = - 10 v$

Divide both sides by $- 10$:

$v = - 8.4$

Oct 9, 2017

$v = - \left(\frac{42}{5}\right) = - 8.4$

#### Explanation:

$- 2 \left(5 v - 3\right) - 8 = 82$
$- 10 v + 6 - 8 = 82$
$- 10 v = 82 + 2$
$v = - \left(\frac{84}{10}\right) = - \left(\frac{42}{5}\right) = - 8.4$

Oct 9, 2017

$v = - \frac{42}{5} \mathmr{and} 8.4$

#### Explanation:

$82 = - 2 \left(5 v - 3\right) - 8$

Expressing the bracket

$82 = - 10 v + 6 - 8$

Simplifying

$82 = - 10 v - 2$

Collecting like terms

$82 + 2 = - 10 v$

$84 = - 10 v$

Divide both sides by $\textcolor{b l u e}{- 10}$

$\frac{84}{\textcolor{b l u e}{- 10}} = \frac{- 10 v}{\textcolor{b l u e}{- 10}}$

$\frac{84}{-} 10 = \frac{\cancel{- 10} v}{\cancel{- 10}}$

$- \frac{84}{10} = v$

$v = {\cancel{- 84}}^{42} / {\cancel{10}}_{5}$

$v = - \frac{42}{5} \mathmr{and} 8.4$