How do you solve #cos 2x + sin x=0#?
2 Answers
Solution
As
So
Replace
#f(x) = cos 2x + sin x = 1 - 2sin^2 x + sin x = 0#
Call
#f(t) = -2t^2 + t + 1 = 0#
Solve this quadratic equation. Because
Next, solve the basic trig equation:
#t1 = sin x = 1 -> x = pi/2#
Solve:
#t2 = sin x = -1/2 -> x = (7pi)/6 and x = (11pi)/6#
Answers within period
Extended answers:
#x = pi/2 + k*2pi#
#x = 7pi/6 + k*2pi#
#x = 11pi/6 + k*pi#
Check with f(x) = cos 2x + sin x = 0
#x= pi/2# -->#cos 2x = cos pi = -1# ;#sin x = sin pi/2 = 1# --> f(x) = -1 + 1 = 0. OK
#x = (7pi)/6# -->#cos 2x = cos ((14pi)/6) = cos ((2pi)/6) = cos pi/3 = 1/2# ;#sin ((7pi)/6) = -1/2# -->#f(x) = 1/2 - 1/2 = 0.# OK
#x = ((11pi)/6)# ->#cos ((22pi)/6) = cos ((10pi)/6) = cos ((5pi))/3 = 1/2# ;#sin ((11pi)/6) = -1/2# -->#f(x) = 1/2 - 1/2 = 0 # . OK.