How do you solve #e^(3x)=4#?

1 Answer
Mar 27, 2018

Answer:

#x=ln4/3~~0.46#

Explanation:

Given: #e^(3x)=4#

Take natural logarithm of both sides.

#ln(e^(3x))=ln4#

#3x=ln4#

Divide by #3#.

#(color(red)cancelcolor(black)3x)/(color(red)cancelcolor(black)3)=ln4/3#

#x=ln4/3#