How do you solve for a in #2a - b = ac + 3b#?

1 Answer
Apr 25, 2018

Answer:

#a=(4b)/(2-c)#

Explanation:

#"collect terms in a on the left side of the equation"#
#"and all other terms on the right side"#

#"add b to both sides"#

#2acancel(-b)cancel(+b)=ac+3b+b#

#rArr2a=ac+4b#

#"subtract "ac" from both sides"#

#2a-ac=cancel(ac)cancel(-ac)+4b#

#rArr2a-ac=4b#

#"factor out the a on the left side"#

#rArra(2-c)=4b#

#"divide both sides by "(2-c)#

#(acancel((2-c)))/cancel(2-c)=(4b)/(2-c)#

#rArra=(4b)/(2-c)#