How do you solve for x?: #log(x) + log(x-9) = 1#
1 Answer
Apr 17, 2018
Explanation:
#"using the "color(blue)"laws of logarithms"#
#•color(white)(x)logx+logy=log(xy)#
#•color(white)(x)log_b x=nhArrx=b^n#
#"note that "logx-=log_(10)x#
#rArrlog_(10)x(x-9)=1#
#rArrx^2-9x=10^1=10#
#rArrx^2-9x-10=0larrcolor(blue)"in standard form"#
#rArr(x-10)(x+1)=0#
#rArrx=10" or "x=-1#
#"note that "x>0" and "x-9>0#
#rArrx=-1" is invalid"#
#rArrx=10" is the solution"#