How do you solve #\frac { 33} { 40} = \frac { 45} { x }#?

1 Answer
Jul 16, 2017

See a solution process below:

Explanation:

Step 1) Multiply each side of the equation by #color(red)(40)color(blue)(x)# to eliminate the fractions while keeping the equation balanced:

#color(red)(40)color(blue)(x) xx 33/40 = color(red)(40)color(blue)(x) xx 45/x#

#cancel(color(red)(40))color(blue)(x) xx 33/color(red)(cancel(color(black)(40))) = color(red)(40)cancel(color(blue)(x)) xx 45/color(blue)(cancel(color(black)(x)))#

#33x = 1800#

Step 2) Divide each side of the equation by #color(red)(33)# to solve for #x# while keeping the equation balanced:

#(33x)/color(red)(33) = 1800/color(red)(33)#

#(color(red)(cancel(color(black)(33)))x)/cancel(color(red)(33)) = (3 xx 600)/(3 xx 11)#

#x = (color(red)(cancel(color(black)(3))) xx 600)/(color(red)(cancel(color(black)(3))) xx 11)#

#x = 600/11#