How do you solve #ln(2x -1) = 0 #?

1 Answer
Mar 3, 2018

Answer:

#x=1#

Explanation:

#ln(2x-1)=0#
We know that, #AAainR^(+)-{1},x inR, and, y inR^(+)color(red)(log_ay=XhArry=a^X)#
So,
#ln(2x-1)=0hArr(2x-1)=e^0=1#
#rArr2x-1=1rArr2x=2rArrx=1#
Checking: Put x=1
#LHS=ln(2(1)-1)=ln(2-1)=ln1=0=RHS#