How do you solve #ln x + ln (x-2) = 1#?
1 Answer
Explanation:
Assuming we are looking for Real solutions, we want to find Real values of
#1 = ln(x) + ln(x-2) = ln(x(x-2)) = ln(x^2-2x)#
Applying the exponential fundtion to both sides, we have:
#e = e^1 = e^(ln(x^2-2x)) = x^2-2x#
Subtracting
#0 = x^2-2x-e#
#= (x^2-2x+1)-(e+1)#
#= (x-1)^2-(sqrt(e+1))^2#
#= ((x-1)-sqrt(e+1))((x-1)+sqrt(e+1))#
#= (x-(1+sqrt(e+1)))(x-(1-sqrt(e+1)))#
So
Note that
-
#x = 1-sqrt(1+e) < 0# making the arguments to#ln# in the original equation negative, so having no Real value. -
#x = 1+sqrt(1+e) > 2# yielding Real values for the natural logarithms in the original equation.
So
Footnote
Note that
In general:
#ln(z) = ln abs(z) + Arg(z)i#
So in the case of Real negative values of
#ln(z) = ln abs(z) + pii#
In particular:
#ln(1-sqrt(1+e))+ln(1-sqrt(1+e)-2)#
#=ln(sqrt(1+e)-1) + pii + ln(sqrt(1+e)+1) + pii#
#=ln((sqrt(1+e)-1)(sqrt(1+e)+1)) + 2pii#
#=ln(e) + 2pii#
#=1 + 2pii != 1#