How do you solve #log_3 (-4x+354)-log_3 (-2x+2)=3#?

1 Answer
Feb 5, 2015

I would use the fact that:
#log_aM-log_aN=log_a(M/N)#
You get:
#log_3(-4x+354)-log_3(-2x+2)=3#
#Log_3((-4x+354)/(-2x+2))=3#
Using the definition of logarithm:
#Log_ax=c -> a^c=x#

you get:

#((-4x+354)/(-2x+2))=3^3=27#

and:

#-4x+354=27(-2x+2)#
#-4x+354=-54x+54#
#50x=-300#
#x=-300/50=-6#