How do you solve #\log _ { 9} ( 3u + 14) - \log _ { 5} 5= \log _ { 3} 2u#?

1 Answer
Apr 13, 2017

#log_9 (3u + 14) - log_3(2u) = log_5 5#

We now use the change of base formula #log_a n = logn/loga#.

#log(3u + 14)/log9 - log(2u)/log3 = log5/log5#

#log(3u + 14)/log9 - log(2u)/log3 = 1#

Now apply #loga^n = nloga#.

#log(3u + 14)/(2log3) - log(2u)/log3 = 1#

#log(3u + 14)/(2log3) - (2log(2u))/(2log3) = 1#

#log_9 (3u + 14) - 2log_9 (2u) = 1#

#log_9 (3u + 14) - log_9 (4u^2) = 1#

Now apply #log_a n - log_a m = log_a (n/m)#

#log_9 ((3u + 14)/(4u^2)) = 1#

#(3u + 14)/(4u^2) = 9#

#3u + 14 = 36u^2#

#0 = 36u^2 - 3u - 14#

#u = (-(-3) +- sqrt((-3)^2 - 4 * 36 *- 14))/(2*72)#

#u = (3 +- sqrt(2025))/144#

#u = 48/144 or -42/144#

#u = 1/3 or -7/24#

However, #log_2(na)# can never take a negative value of #a# as long as #n# is positive, therefore the only solution is #u = 1/3#.

Hopefully this helps!