How do you solve #log2sqrt(5x+1) = 4#?

1 Answer
Sep 11, 2015

I found:
#x=5xx10^6# if log in base 10
or
#x=51# if log in base 2

Explanation:

Assuming a log in base #10# we can write:
#log_(10)2sqrt(5x+1)=4#

using the definition of log:
#2sqrt(5x+1)=10^4#
#cancel(2)sqrt(5x+1)=10000/2#
#sqrt(5x+1)=5000#

squaring both sides:
#5x+1=(5000)^2#
#x=((5000)^2-1)/5~~5xx10^6#

If on the other hand the base is #2# we can write:
#log_2sqrt(5x+1)=4#
again using the definition of log we get:
#sqrt(5x+1)=2^4#
#sqrt(5x+1)=16#
squaring both sides:
#5x+1=256#
#5x=255#
#x=51#