How do you solve #sec^2x+2tanx=6# in the interval [0,360]?

1 Answer
Feb 4, 2017

#45^@, 90^@#,

Explanation:

#sec^2 x + 2tan x = 6#
#1/(cos^2 x) + (2sin x)/(cos x) = 6#
#1 + 2sin x.cos x = 6cos^2 x#
Use trig identities:
sin 2x = 2sin x.cos x
#2cos^2 x = 1 + cos 2x#
In this case we have:
#1 + 2sin x = 3 + 3cos 2x#
#2sin 2x - 3cos 2x = 2#
#sin 2x - (3/2)cos 2x = 1#
Call #tan t = sin t/(cos t) = 3/2 = tan 56^@31#, we get:
#sin 2x.cos t - sin t.cos 2x = cos 56^@31 = 0.55#
sin (2x - 56.31) = 0.55
Use calculator and unit circle -->
a. #(2x - 56.31) = 33^@68#
2x = 33.68 + 56.32 = 90^@ --> #x = 45@#
b. (2x - 56.31) = 180 - 56.31 = 123^@69
#2x = 123.69 + 56.31 = 180^@ --> #x = 90^@#