How do you solve #secxtanx=2/3#?

1 Answer
Nov 12, 2016

#pi/6, (5pi)/6#

Explanation:

#sec xtan x = 2/3#
#(1/cos x)(sin x/(cos x)) = 2/3#
Cross multiply:
#3sin x = 2 cos^2 x = 2(1 - sin^2 x) = 2 - 2sin^2 x#
Solve this quadratic equation in sin x:
#2sin^2 x + 3sin x - 2 = 0#.
Use the improved quadratic formula (Socratic Search)
#D = d^2 = b^2 - 4ac = 9 + 16 = 25# --> #d = +- 5#
There are 2 real roots:
#sin x = -b/(2a) +- d/(2a) = -3/4 +- 5/4#
#sin x = - 8/4 = - 2# (rejected because < - 1) and
#sin x = 2/4 = 1/2#
Trig table and unit circle -->
#sin x = 1/2# --> arc #x = pi/6# and arc #x = (5pi)/6#
For general answers, add #(k2pi)#