How do you solve #sin(3x) + sin^2 (x)= 2#?

1 Answer
Oct 17, 2015

Solve sin 3x + sin^2 x = 2

Ans: #x = (3pi)/2#

Explanation:

#sin 3x + sin^2 x = 2#
Trig identity --> #sin (3x) = 3sin x - 4sin^3 x.# Call sin x = t, we get
#3t - 4t^3 + t^2 = 2#
#f(t) = 4t^3 - t^2 - 3t + 2 = 0#
Since (a - b + c - d = 0), one factor is (t + 1). By division, we get:
#f(t) = (t + 1)(4t^2 - 5t + 2) = 0#. Solve this product.

a. t = sin x = - 1 --> #x = (3pi)/2 #
b. #(4t^2 - 5t + 2) = 0#
#D = b^2 - 4ac = 25 - 32 < 0.# There are no real roots.
Therefor, there is unique answer: #x = (3pi)/2#
Check.
#x = (3pi)/2# --> #sin 3x = sin ((9pi)/2) = sin (pi/2) = 1 #--> #sin^2 x = 1.#
#sin 3x + sin^2 x = 1 + 1 = 2#. OK