How do you solve #sin2xsinx-cosx=0#?

2 Answers
Nov 8, 2016

The values of #x in { pi/2,(3pi)/2,pi/4,(3pi)/4,(5pi)/4,(7pi)/4} #

Explanation:

#Sin2x=2sinxcosx#
#sin2xcosx-cosx=2sinxcosxsinx-cosx=cosx(2sin^2x-1)#
#cosx=0# and #2sin^2x-1=0# #=>##sinx=+-1/sqrt2#
Let the solutions #x in[0,2pi]#
The solution of the first equation is #(pi/2,(3pi)/2)#
The solution of the second equations are #(pi/4,(3pi)/4,(5pi)/4,(7pi)/4)#

Nov 8, 2016

#x=(kpi)/2 or x=(kpi)/4 k in ZZ#

Explanation:

Solving the given trigonometric equation #sin2xsinx - cosx# is determined by:

Substituting some trigonometric identities.

#color(blue)(sin2x=2sinxcosx)#

#color(red)(cos2x=1 - 2sin^2)#

Performing some calculations.

Factorizing #sin2x - cosx #

#" "#

Solving the given equation:

#sin2xsinx-cosx=0#

#rArr(color(blue)(2sinxcosx))sinx-cosx=0#

#rArr2sin^2xcosx-cosx=0#

#rArrcosx(color(red)(2sin^2x-1))=0#

#rArrcosx(color(red)(-cos2x))=0#

#rArr-cosxcos2x=0#

#cosx =0 rArr x=(kpi)/2" " k in ZZ#

Or

#cos2x=0 #
#rArr 2x=(kpi)/2#
#rArr x=(kpi)/4 " " k in ZZ#

Therefore,

#x=(kpi)/2 or x=(kpi)/4 k in ZZ#