How do you solve #sum_(i=1)^5 (-1)^i/(i!)#?
1 Answer
Feb 7, 2017
Explanation:
With this example, it is probably easiest to just expand out and sum the five terms manually:
#sum_(i=1)^5 ((-1)^i)/(i!) = -1/(1!)+1/(2!)-1/(3!)+1/(4!)-1/(5!)#
#color(white)(sum_(i=1)^5 ((-1)^i)/(i!)) = -1+1/2-1/6+1/24-1/120#
#color(white)(sum_(i=1)^5 ((-1)^i)/(i!)) = -1/2-1/6+1/24-1/120#
#color(white)(sum_(i=1)^5 ((-1)^i)/(i!)) = -5/8-1/120#
#color(white)(sum_(i=1)^5 ((-1)^i)/(i!)) = -19/30#