Step 1) Solve each equation to #8y#
#3x + 8y = -2#
#3x - color(red)(3x) + 8y = -2 - color(red)(3x)#
#0 + 8y = -2 - 3x#
#8y = -2 - 3x#
#2x - 4y = 8#
#2x - color(red)(2x) - 4y = 8 - color(red)(2x)#
#0 - 4y = 8 - 2x#
#-4y = 8 - 2x#
#color(red)(-2) xx -4y = color(red)(-2)(8 - 2x)#
#8y = (color(red)(-2) xx 8) - (color(red)(-2) xx 2x)#
#8y = -16 - (-4x)#
#8y = -16 + 4x#
Step 2) Because the left side of both equations are the same we can equate the right side of each equation and solve for #x#:
#-2 - 3x = -16 + 4x#
#-2 + color(blue)(16) - 3x + color(red)(3x) = -16 + color(blue)(16) + 4x + color(red)(3x)#
#14 - 0 = 0 + (4 + color(red)(3))x#
#14 = 7x#
#14/color(red)(7) = (7x)/color(red)(7)#
#2 = (color(red)(cancel(color(black)(7)))x)/cancel(color(red)(7))#
#2 = x#
#x = 2#
Step 3) Substitute #2# for #x# in the solution to either equation in Step 1 and solve for #y#:
#-4y = 8 - 2x# becomes:
#-4y = 8 - (2 xx 2)#
#-4y = 8 - 4#
#-4y = 4#
#(-4y)/color(red)(-4) = 4/color(red)(-4)#
#(color(red)(cancel(color(black)(-4)))y)/cancel(color(red)(-4)) = -1#
#y = -1#
The Solution Is:
#x = 2# and #y = -1#
Or
#(2, -1)#