How do you solve the system of equations #-2x + 3y = 15# and #- 3x + y = 19#?

1 Answer
Jun 4, 2017

See a solution process below:

Explanation:

Step 1) Solve the second equation for #y#:

#-3x + y = 19#

#color(red)(3x) - 3x + y = color(red)(3x) + 19#

#0 + y = 3x + 19#

#y = 3x + 19#

Step 2) Substitute #(3x + 19)# for #y# in the first equation and solve for #x#:

#-2x + 3y = 15# becomes:

#-2x + 3(3x + 19) = 15#

#-2x + (3 xx 3x) + (3 xx 19) = 15#

#-2x + 9x + 57 = 15#

#(-2 + 9)x + 57 = 15#

#7x + 57 = 15#

#7x + 57 - color(red)(57) = 15 - color(red)(57)#

#7x + 0 = -42#

#7x = -42#

#(7x)/color(red)(7) = -42/color(red)(7)#

#(color(red)(cancel(color(black)(7)))x)/cancel(color(red)(7)) = -6#

#x = -6#

Step 3) Substitute #-6# for #x# in the solution to the second equation at the end of Step 1 and calculate #y#:

#y = 3x + 19# becomes:

#y = (3 xx -6) + 19#

#y = -18 + 19#

#y = 1#

The solution is: #x = -6# and #y = 1# or #(-6, 1)#