How do you solve the system of equations #2x + 4y = - 20# and #3x + 5y = - 24#?

1 Answer
Jun 10, 2017

See a solution process below:

Explanation:

Step 1) Solve the first equation for #x#:

#2x + 4y = -20#

#(2x + 4y)/color(red)(2) = -20/color(red)(2)#

#(2x)/color(red)(2) + (4y)/color(red)(2) = -10#

#x + 2y = -10#

#x + 2y - color(red)(2y) = -10 - color(red)(2y)#

#x + 0 = -10 - 2y#

#x = -10 - 2y#

Step 2) Substitute #(-10 - 2y)# for #x# in the second equation and solve for #y#:

#3x + 5y = -24# becomes:

#3(-10 - 2y) + 5y = -24#

#(3 xx -10) - (3 xx 2y) + 5y = -24#

#-30 - 6y + 5y = -24#

#-30 + (-6 + 5)y = -24#

#-30 + (-1)y = -24#

#-30 - y = -24#

#color(red)(30) - 30 - y = color(red)(30) - 24#

#0 - y = 6#

#-y = 6#

#color(red)(-1) xx -y = color(red)(-1) xx 6#

#y = -6#

Step 3) Substitute #-6# for #y# in the solution to the first equation at the end of Step 1 and calculate #x#:

#x = -10 - 2y# becomes:

#x = -10 - (2 xx -6)#

#x = -10 - (-12)#

#x = -10 + 12#

#x = 2#

The solution is: #x = 2# and #y = -6# or #(2, -6)#