Step 1) Solve the second equation for #x#:
#-2x - 8y = -6#
#-2x - 8y + color(red)(8y) = -6 + color(red)(8y)#
#-2x - 0 = -6 + 8y#
#-2x = -6 + 8y#
#(-2x)/color(red)(-2) = (-6 + 8y)/color(red)(-2)#
#(color(red)(cancel(color(black)(-2)))x)/cancel(color(red)(-2)) = (-6)/color(red)(-2) + (8y)/color(red)(-2)#
#x = 3 - 4y#
Step 2) Substitute #3 - 4y# for #x# in the first equation and solve for #y#:
#2x + 9y = -5# becomes:
#2(3 - 4y) + 9y = -5#
#(2 xx 3) - (2 xx 4y) + 9y = -5#
#6 - 8y + 9y = -5#
#6 + y = -5#
#-color(red)(6) + 6 + y = -color(red)(6) - 5#
#0 + y = -11#
#y = -11#
Step 3) Substitute #-11# for #y# in the solution to the second equation at the end of Step 1 and calculate #x#:
#x = 3 - 4y# becomes:
#x = 3 - (4 xx -11)#
#x = 3 - (-44)#
#x = 3 + 44#
#x = 47#
The solution is: #x = 47# and #y = -11# or #(47, -11)#