How do you solve the system of equations #-3x - 4y = - 8# and #2x + y = 12#?

1 Answer
Apr 11, 2017

See the entire solution process below:

Explanation:

Step 1) Solve the second equation for #y#:

#2x + y = 12#

#-color(red)(2x) + 2x + y = -color(red)(2x) + 12#

#0 + y = -2x + 12#

#y = -2x + 12#

Step 2) Substitute #-2x + 12# for #y# in the first equation and solve for #x#:

#-3x - 4y = -8# becomes:

#-3x - 4(-2x + 12) = -8#

#-3x - (4 xx -2x) - (4 xx 12) = -8#

#-3x - (-8x) - 48 = -8#

#-3x + 8x - 48 = -8#

#(-3 + 8)x - 48 + color(red)(48) = -8 + color(red)(48)#

#5x - 0 = 40#

#5x = 40#

#(5x)/color(red)(5) = 40/color(red)(5)#

#(color(red)(cancel(color(black)(5)))x)/cancel(color(red)(5)) = 8#

#x = 8#

Step 3) Substitute #8# for #x# in the solution to the second equation at the end of Step 1 and calculate #y#:

#y = -2x + 12# becomes:

#y = (-2 xx 8) + 12#

#y = -16 + 12#

#y = -4#

The solution is: #x = 8# and #y = -4# or #(8, -4)#