Step 1) Solve the second equation for #y#:
#2x + y = 12#
#-color(red)(2x) + 2x + y = -color(red)(2x) + 12#
#0 + y = -2x + 12#
#y = -2x + 12#
Step 2) Substitute #-2x + 12# for #y# in the first equation and solve for #x#:
#-3x - 4y = -8# becomes:
#-3x - 4(-2x + 12) = -8#
#-3x - (4 xx -2x) - (4 xx 12) = -8#
#-3x - (-8x) - 48 = -8#
#-3x + 8x - 48 = -8#
#(-3 + 8)x - 48 + color(red)(48) = -8 + color(red)(48)#
#5x - 0 = 40#
#5x = 40#
#(5x)/color(red)(5) = 40/color(red)(5)#
#(color(red)(cancel(color(black)(5)))x)/cancel(color(red)(5)) = 8#
#x = 8#
Step 3) Substitute #8# for #x# in the solution to the second equation at the end of Step 1 and calculate #y#:
#y = -2x + 12# becomes:
#y = (-2 xx 8) + 12#
#y = -16 + 12#
#y = -4#
The solution is: #x = 8# and #y = -4# or #(8, -4)#