Step 1) Solve the second equation for #y#:
#color(red)(x) - x + y = color(red)(x) - 7#
#0 + y = x - 7#
#y = x - 7#
Step 2) Substitute #color(red)(x - 7)# for #y# in the first equation and solve for #x#:
#3x + 7(color(red)(x - 7)) = 1#
#3x + 7x - 49 = 1#
#10x - 49 = 1#
#10x - 49 + color(red)(49) = 1 + color(red)(49)#
#10x - 0 = 50#
#10x = 50#
#(10x)/color(red)(10) = 50/color(red)(10)#
#(color(red)(cancel(color(black)(10)))x)/cancel(color(red)(10)) = 5#
#x = 5#
Step 3) Substitute #color(red)(5)# for #x# in the solution to the second equation from Step 1 and calculate #y#
#y = color(red)(5) - 7#
#y = -2#