How do you solve the system of equations #-3x + 7y = 8# and #x + 2y = - 7#?

1 Answer
Dec 26, 2017

See a solution process below:

Explanation:

Step 1) Solve the second equation for #x#:

#x + 2y = -7#

#x + 2y - color(red)(2y) = -7 - color(red)(2y)#

#x + 0 = -7 - 2y#

x = -7 - 2y#

Step 2) Substitute #(-7 - 2y)# for #x# in the first equation and solve for #y#:

#-3x + 7y = 8# becomes:

#-3(-7 - 2y) + 7y = 8#

#(-3 xx -7) + (-3 xx -2y) + 7y = 8#

#21 + 6y + 7y = 8#

#21 + (6 + 7)y = 8#

#21 + 13y = 8#

#21 - color(red)(21) + 13y = 8 - color(red)(21)#

#0 + 13y = -13#

#13y = -13#

#(13y)/color(red)(13) = -13/color(red)(13)#

#(color(red)(cancel(color(black)(13)))y)/cancel(color(red)(13)) = -1#

#y = -1#

Step 3) Substitute #-1# for #y# in the solution to the second equation at the end of Step 1 and calculate #x#:

x = -7 - 2y# becomes:

x = -7 - (2 xx -1)#

x = -7 - (-2)#

x = -7 + 2#

#x = -5#

**The Solution Is:# #x = -5# and #y = -1# or #(-5, -1)#