Step 1) Solve the second equation for #x#:
#x - 6y = -59#
#x - 6y + color(red)(6y) = -59 + color(red)(6y)#
#x - 0 = -59 + 6y#
#x = -59 + 6y#
Step 2) Substitute #-59 + 6y# for #x# into the first equation and solve for #y#:
#3x - 8y = -47# becomes:
#3(-59 + 6y) - 8y = -47#
#(3 * -59) + (3 * 6y) - 8y = -47#
#-177 + 18y - 8y = -47#
#-177 + 18y - 8y = -47#
#-177 + 10y = -47#
#color(red)(177) - 177 - 17y = color(red)(177) - 47#
#0 + 10y = 130#
#10y = 130#
#(10y)/color(red)(10) = 130/color(red)(10)#
#(color(red)(cancel(color(black)(10)))y)/cancel(color(red)(10)) = 130/10#
#y = 13#
Step 3) Substitute #13# for #y# into the solution for the second equation at the end of Step 1 and calculate #x#:
#x - 6y = -59# becomes:
#x - (6 * 13) = -59#
#x - 78 = -59#
#x - 78 + color(red)(78) = -59 + color(red)(78)#
#x - 0 = 19#
#x = 19#
The solution is: #x = 19# and #y = 13# or #(19, 13)#