How do you solve the system of equations #3x - y = 3# and #x + 7y = 23#?
2 Answers
Solution:
Explanation:
by
equation (3) we get
in equation (1) we get
Solution:
Explanation:
#"using the method of "color(blue)"substitution"#
#3x-y=3to(1)#
#x+7y=23to(2)#
#"rearrange equation "(2)" to give x in terms of y"#
#rArrx=23-7yto(3)#
#color(blue)"substitute "x=23-7y" into equation "(1)#
#3(23-7y)-y=3#
#rArr69-21y-y=3#
#rArr69-22y=3#
#"subtract 69 from both sides"#
#cancel(69)cancel(-69)-22y=3-69#
#rArr-22y=-66#
#"divide both sides by "-22#
#(cancel(-22) y)/cancel(-22)=(-66)/(-22)#
#rArry=3#
#"substitute this value into equation "(3)#
#rArrx=23-(7xx3)=23-21=2#
#"point of intersection "=(2,3)#
graph{(y-3x+3)(y+1/7x-23/7)((x-2)^2+(y-3)^2-0.07)=0 [-10, 10, -5, 5]}