How do you solve the system of equations #3x - y = 3# and #x + 7y = 23#?

2 Answers
Nov 12, 2017

Solution: # x = 2 , y = 3#

Explanation:

#3x-y=3 ; (1) and x+7y=23 ; (2)# . Multiplying equation (2)

by #3# we get #3x+21y=69 ; (3)#. Subtracting equation (1) from

equation (3) we get #22y=66 or y = 66/22=3#. Putting #y=3#

in equation (1) we get #3x-3=3 or 3x = 6 or x=2#

Solution: # x = 2 , y = 3# [Ans]

Nov 12, 2017

#(x,y)to(2,3)#

Explanation:

#"using the method of "color(blue)"substitution"#

#3x-y=3to(1)#

#x+7y=23to(2)#

#"rearrange equation "(2)" to give x in terms of y"#

#rArrx=23-7yto(3)#

#color(blue)"substitute "x=23-7y" into equation "(1)#

#3(23-7y)-y=3#

#rArr69-21y-y=3#

#rArr69-22y=3#

#"subtract 69 from both sides"#

#cancel(69)cancel(-69)-22y=3-69#

#rArr-22y=-66#

#"divide both sides by "-22#

#(cancel(-22) y)/cancel(-22)=(-66)/(-22)#

#rArry=3#

#"substitute this value into equation "(3)#

#rArrx=23-(7xx3)=23-21=2#

#"point of intersection "=(2,3)#
graph{(y-3x+3)(y+1/7x-23/7)((x-2)^2+(y-3)^2-0.07)=0 [-10, 10, -5, 5]}