How do you solve the system of equations #3x + y = - 6# and #10x + 10y = 20#?

1 Answer
Mar 4, 2017

See the entire solution process below:

Explanation:

Step 1) Solve the first equation for #y#:

#3x + y = -6#

#-color(red)(3x) + 3x + y = -color(red)(3x) - 6#

#0 + y = -3x - 6#

#y = -3x - 6#

Step 2) Substitute #-3x - 6# for #y# in the second equation and solve for #x#:

#10x + 10y = 20# becomes:

#10x + 10(-3x - 6) = 20#

#10x + (10 xx -3x) - (10 xx 6) = 20#

#10x - 30x - 60 = 20#

#-20x - 60 = 20#

#-20x - 60 + color(red)(60) = 20 + color(red)(60)#

#-20x - 0 = 80#

#-20x = 80#

#(-20x)/color(red)(-20) = 80/color(red)(-20)#

#(color(red)(cancel(color(black)(-20)))x)/cancel(color(red)(-20)) = -4#

#x = -4#

Step 3) Substitute #-4# for #x# in the solution to the first equation at the end of Step 1 and calculate #y#:

#y = -3x - 6# becomes:

#y = (-3 xx -4) - 6#

#y = 12 - 6#

#y = 6#

The solution is: #x = -4# and #y = 6# or #(-4, 6)#