Step 1) Solve the first equation for #y#:
#3x + y = -6#
#-color(red)(3x) + 3x + y = -color(red)(3x) - 6#
#0 + y = -3x - 6#
#y = -3x - 6#
Step 2) Substitute #-3x - 6# for #y# in the second equation and solve for #x#:
#10x + 10y = 20# becomes:
#10x + 10(-3x - 6) = 20#
#10x + (10 xx -3x) - (10 xx 6) = 20#
#10x - 30x - 60 = 20#
#-20x - 60 = 20#
#-20x - 60 + color(red)(60) = 20 + color(red)(60)#
#-20x - 0 = 80#
#-20x = 80#
#(-20x)/color(red)(-20) = 80/color(red)(-20)#
#(color(red)(cancel(color(black)(-20)))x)/cancel(color(red)(-20)) = -4#
#x = -4#
Step 3) Substitute #-4# for #x# in the solution to the first equation at the end of Step 1 and calculate #y#:
#y = -3x - 6# becomes:
#y = (-3 xx -4) - 6#
#y = 12 - 6#
#y = 6#
The solution is: #x = -4# and #y = 6# or #(-4, 6)#