How do you solve the system of equations #4x + y = 15# and #7x - 2y = 15# by the substitution method?

1 Answer
Mar 4, 2017

#x =3" "y=3#

Explanation:

#4x +color(red)(y) =15" and " 7x -2y =15#

There is a single #color(red)(y)# in the first equation.

Re-arrange it to find #y# in terms of #x#.

#color(red)(y =(15-4x))#

Replace #color(red)(y)# in the second equation with #(color(red)(15-4x))#

#color(white)(................................................)7x - 2color(red)(y)=15#
#color(white)(........................................................)color(red)(darr)#
#color(white)(.........................................)7x - 2(color(red)(15-4x))=15#

#color(white)(...............................................)7x -30+8x=15#

#color(white)(...............................................................)15x=45#
#color(white)(..................................................................)color(blue)(x=3)#

Now that you know the value for #x#, find the value for #y#.

#y=15-4color(blue)(x)#

#y=15-4color(blue)((3))#

#y = 15-12#
#y =3#